MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia.

نویسندگان

  • Lili Zeng
  • Jianrong Liu
  • Yongting Wang
  • Ling Wang
  • Suiqing Weng
  • Yaohui Tang
  • Chaobo Zheng
  • Qi Cheng
  • Shengdi Chen
  • Guo-Yuan Yang
چکیده

MicroRNA-210 (miR-210), a master and pleiotropic hypoxia-microRNA, plays multiple roles in brain ischemia. However, miR-210 expression and its function in humans have not been explored. The aim of our study is to evaluate the correlation of blood miR-210 with clinical findings in acute ischemic stroke. Blood samples were obtained from stroke patients (n=112) and healthy controls (n= 60). MiR-210 was measured at within 3, 7 and 14 days after stroke using a quantitative PCR technique. Stroke severity and clinical outcome were evaluated by NIHSS and modified Rankin Score. Both blood and brain miR-210 in ischemic mice was examined and the correlation was investigated. Compared to healthy controls, blood miRNA-210 was significantly decreased in stroke patients (0.93 vs. 1.36; P=0.001), especially at 7 days (0.56 vs. 1.36; P=0.001) and 14 days of stroke onset (0.50 vs. 1.36; P=0.001). The cut off point of miR-210 in diagnosis was 0.505 with 88.3 per cent sensitivity. MiR-210 level in stroke patients with good outcome was significantly higher than patients with poor outcome (1.2 vs. 0.44; P=0.012). The correlation between blood and brain miR-210 in ischemic mice was positive (R2=0.57, P=0.001). Blood miR-210 is a novel sensitive biomarker for clinical diagnosis and prognosis in acute cerebral ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats

Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...

متن کامل

P134: Central Nervous System and Blood Biomarker in Stroke, CNS Bleeding, Epilepsy, and Traumatic CNS Injury; MicroRNAs

A Central nervous system (CNS) hemorrhage is bleeding in or around the brain and spinal cord. Reasons of CNS hemorrhage include high blood pressure, cancers, drug abuse, abnormally weak blood vessels that leakage, and trauma. Regression of CNS bleeding was confirmed to be relatively repetitive in patients with severe FV, FX, FVII and FXIII deficiencies. Generally in CNS hemorrhage, radiological...

متن کامل

Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...

متن کامل

MicroRNA-210 Suppresses Junction Proteins and Disrupts Blood-Brain Barrier Integrity in Neonatal Rat Hypoxic-Ischemic Brain Injury

Cerebral edema, primarily caused by disruption of the blood-brain barrier (BBB), is one of the serious complications associated with brain injury in neonatal hypoxic-ischemic encephalopathy (HIE). Our recent study demonstrated that the hypoxic-ischemic (HI) treatment significantly increased microRNA-210 (miR-210) in the neonatal rat brain and inhibition of miR-210 provided neuroprotection in ne...

متن کامل

Evaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat

Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2011